/
View FEA Results [PIG]

View FEA Results [PIG]

Please adhere to the following steps prior to analysis. Ensure that the generated FEA model accurately represents your project.

Step 1: Checking Staged Construction Model

 

Follow the below steps to learn how to verify the staged construction model to ensure an accurate representation of construction sequencing.

1

Open the Model: Open the OpenBrIM APP to either initiate a new project or access a previously created model.

2

Checking Staged Construction Inputs:

Navigate to Construction Stage and see each construction stage defined in the model.

 

 

3

Identify the previous stage (Prior Stage) of each stage.

The prior stage for the first stage should be NULL.

For all other stages, ensure that the inputs for the prior stage are correct. The order of rows may not have functional significance for the software's prior stage parameter; however, having the correct order can make visualization easier. If you need to change the row order, use the 'Shift Rows Up/Down' or 'Move Rows' command after clicking on the name cell.

Ensure that the construction method is 'Equal' for the deck hardening stage, and for other stages, it should be 'None'

The Load Type holds significance in facilitating the extraction of forces from each stage. However, it does not impact the analysis results.

Ensure that all stages related to transient loads (such as wind, live load, temperature load, etc.) are branched from a permanent load stage, and that you do not proceed directly from that stage

Furthermore, you have the option to visualize the sequence of construction stages and their corresponding activities through a tree view.

4

 

5

Visual Verification: Firstly, navigate to FEA tab.

Thoroughly review the model at each stage visually. Ensure that it accurately reflects the real construction sequence.

 

6

Within the Finite Element Analysis (FEA) model, there are two viewing options available.

The first option involves displaying your constructed structure up to the designated stage you've chosen: 'Display Constructed Only.'

Conversely, the second option involves presenting the completed construction, irrespective of the chosen stage: 'Display All Structure.'

Activate 'Display Constructed Only' and navigate through each stage to ensure that it accurately reflects the real construction sequence.

 

7

For a more comprehensive understanding of Finite Element Analysis (FEA), please visit the following link. Finite Element Model

Step 2: Checking Applied Loads

 

Follow the below steps to confirm that all applied loads are correctly integrated into the structural analysis.

1

Payload Application Verification:
Ensure that the loads specified in the OpenBrIM App are accurately set to the appropriate values and stages. All the entered loads will be visible on the Finite Element Analysis (FEA) tab.

2

Visualization of Applied Loads:

Navigate to the FEA tab. On the lower left-hand side, you'll find boxes that allow for selections. Select for the "Loading" tab from the combobox.

 

 

3

Upon choosing various Construction Stages, will be observed the applied of "Surface Load", "Line Load" and "Point Load" to the designated elements.

4

Verification of Applied Load Values:

Follow these steps to visually inspect the loads displayed in the spreadsheet and verify their consideration:

Navigate to the FEA Tab.
Access the "Nodal Loads" spreadsheet from the tree view and lock it.
For improved search convenience, proceed to the "Node" column and apply a filter to the "DECKN26" node.


At this juncture, you can observe all the loads associated with the specified node.

 

 

 


Step 1: Viewing Deformed Model

 

1

The preceding instructions elucidated the definition of "Construction Stage" pertaining to construction phases, as well as the load scenarios that impact the behavior of "elements" throughout these stages.

 

Furthermore, during the application of loads such as dead load, live load and others, the elements experience deformation.
OpenBrIM possesses the capability to display the deformation experienced by the elements at each construction stage.

Start Analysis initially then Navigate to FEA tab.

2
3

With the advancement of construction phases, an increasing number of loads will be applied to the elements. Typically, an element tends to experience greater deformation compared to the previous step.

However, it's noteworthy to consider the "Deconstruction Stage" as an exception. In this context, when certain temporary structures are disassembled, the structural deformation can theoretically be mitigated.

 

 

4

OpenBrIM provides distinct viewing choices for visualizing deformations, namely "Display Cumulative Result" and "Display Incremental Result."

To gain a deeper comprehension of these display alternatives, let's focus on the "BarrierConst" construction stage.

Click on the ellipsis (three dots) adjacent to the stage display box.
Upon selecting the "Display Cumulative Result" option from the ensuing window, the observed deformation is more pronounced. This outcome arises because the calculation includes the "Deformation" data from all preceding construction stages as well.

 

 

 

 

5

By enabling the "Section View" option within the display settings, you can enhance your understanding of how structural elements deform under load.

6

You have the ability to visually magnify or diminish the "Deformation" image through the Scale Factor button.

7

Verification of Deformation Values:

For a visual assessment of the displayed deformations in the spreadsheet, proceed as follows:

Navigate to the FEA Tab.
Access the "Nodal Displacements (Local)" spreadsheet from the tree view.
For improved search ease, scroll down to the "Node" column and utilize a filter for the "DECKN1" node.
This process allows you to examine all the deformations linked to the designated node.

 

 

 

Step 2: Examining Bearing Reactions

 

1

The role of the substructure element's bearings is to convey the structural loads (including dead load, super dead load, live load, etc.) from the superstructure components to the substructure elements.

 

 

 

2

Confirmation of Boundary Conditions:

Validate that the boundary conditions implemented in the OpenBrIM APP align with the genuine support conditions of the physical structure. Incorrect boundary conditions can lead to unrealistic outcomes.

Start Analysis initially then Navigate to FEA tab.

3

In case "Boundary Conditions" are inaccurately provided,
Or, if the linkage between two building elements cannot be accurately established within the designated "Construction Stage", this analysis cannot be executed as depicted in the illustration.

For instance, if the correlation between "End Bent" and piles is not properly defined in "Construction Stage", the analysis will halt at the "Construction Stage" where these two elements are situated.

 

4

Generates an equivalent number of springs corresponding to the count of bearings.

 

Access and locked the "Springs" spreadsheet through the tree view.

The values for each created "spring," input as part of the "Boundary Conditions" will be displayed in this spreadsheet.

These designated "Boundary Conditions" hold significance in the calculation of bearing reactions.

 

5

Navigate FESpring Forces (Local) under Result frıom tree view.

The absence of the Bearing Reaction (FESpring) in the initial "Construction Stage" is due to the simultaneous "construction" of Bearings and "Girders".
Well bearings are not constructed during this particular stage.

To observe the bearing loads, proceed to the "Girder" construction stage.

 

6

Choose "GirderErection" as the designated "Construction Stage".

Subsequently, certain values and FESpring will become visible within the spreadsheet and 3D graphically.

These values represent the bearing reaction (loads) manifested during the pertinent stage.

 

7

Furthermore, as the construction phases advance, the load values observable on the "bearing" will augment in tandem with the increasing loads borne by the structure.

 

 

 

8

Select for "BarrierConst" as the specified "Construction Phase."

When the display options are set to "Cumulative Result" the FESpring Forces values during this stage will surpass those of the "GirderErection" construction stage.

9

If desired, the "Incremental" results of the same “Construction Stage” can be showcased for FESpring Forces (Local).

 

Step 3: Analyzing Girder Forces

 

1

Understanding the distribution of forces within a structural system is of paramount importance for ensuring the integrity and safety of engineering designs. Girders as essential load-bearing components, play a crucial role in transferring loads throughout a structure.

Initiate the “Analysis” first and then navigate to the FEA tab.

 

2

Apply a filter to display the desired Girder Force.

OpenBrIM provides both Composite and Non-composite options for showcasing forces linked to "Girders"

The OpenBrIM analysis engine utilizes "Composite" forces for section calculations. Therefore, select for "Composite" in the case of "Preacast I Girder 5" and proceed.

3

Choose the "GirderErection" as the Construction Stage and

Examine the Composite Forces (My) on “PIG5”.

4

Let's exemine the Composite Forces acting on PIG5 for the chosen Construction Stage.

 

Since there is no progressive load or moment "increment" during this Construction Stage, there will be no graphical results visible.

 

However, if the display mode is set to "Cumulative" a graphical representation of the cumulative total from the inception of Construction Stage up to the specified Construction Stage will be displayed.

5
6

To observe the graphically presented outcomes in the spreadsheet, proceed from the tree view to the "Composite Element Forces (Sectional)" spreadsheet located at the under of the Results section.

 

Choose the desired "Construction Stage" for viewing and you will be able to discern the results at every “Position” (coordinate) within the spreadsheet.

Step 4: Evaluating Girder Stresses

 

1

To view "Girder Stress" you'll undertake analogous actions to those elucidated in the previous section's steps for observing "Girder Force"

 

Initiate the “Analysis” first and then navigate to the FEA tab.

 

2

Apply a filter to display the desired Girder Stresses.

OpenBrIM provides both Composite and Non-composite options for showcasing forces linked to "Girders"

The OpenBrIM analysis engine utilizes "Composite" forces for section calculations. Therefore, select for "Composite" in the case of "Preacast I Girder 5" and proceed.

 

3

Distinct graphical outcomes are presented for various forces.

4

To observe the graphically presented outcomes in the spreadsheet, proceed from the tree view to the "Composite Element Stressed" spreadsheet located at the under of the Results section.

Choose the desired "Construction Stage" for viewing and you will be able to discern the results at every “Position” (coordinate) within the spreadsheet.


 

 

 

Related content

Lane Position [CUG]
Lane Position [CUG]
Read with this
Construction Stage [EX1-PIG]
Construction Stage [EX1-PIG]
More like this
FEA Results [QG-3]
FEA Results [QG-3]
Read with this
Construction Stage [EX1-STG]
Construction Stage [EX1-STG]
More like this
WS AASHTO [SIG]
WS AASHTO [SIG]
Read with this
Construction Stage [SIG]
Construction Stage [SIG]
More like this