Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Next »

A simple frictionless two DOF system is constructed with two springs and two lumped
masses.
Find the two natural frequencies and the corresponding mode shapes.
-Analysis Type
2-D eigenvalue analysis (X-Y plane)
-Unit System
in, lbf
-Dimension
Length:       20.0 in
Mass:         M1=4.0 lbf.sec2/in
                   M2=1.0 lbf.sec2/in
Stiffness:    K=EA/L
-Element
Truss element
-Material
Modulus of elasticity    E=1.0 x 105 psi
-Section Property
Area    A=0.1 in2 
-Boundary Condition
Node 3          ;Constrain all DOFs
Nodes 1 and 2   ;Constrain Dy and Rz (Only Dx allowed)
-Analysis Case
Messes M1 and M2 exist at the nodes 1 and 2 in the X direction respectively.
Number of eigenvalues to be computed = 2
Tested Features
Sources
  • Donald T. Greenwood, "Principles of Dynamics", Englewood Cliff, Prentice-Hall, Inc.,1965 .p.459, EX.9-1.
  • "MSC/NASTRAN, Verification Problem Manual", V.64, The MacNeal-Schwendler Corporation, 1986, Problem No.V0301.
  • "NISA II, Verification Manual", Version 91.0, Engineering Mechanics Research Corporation,1991.


Results


Independent1 (Theoretical)Independent2 (MSC/NASTRAN)Independent3 (NISA II)MIDASOpenBrIM Percent Difference (MIDAS vs Independent1)Percent Difference (MIDAS vs Independent2)Percent Difference (MIDAS vs Independent3)


Mode1




Frequency (rad/sec)










Frequency (cycle/sec)










Period (sec)










Angular velocity, w1 (rad/sec)










X1










X2










Mode2Frequency (rad/sec)










Frequency (cycle/sec)










Period (sec)










Angular velocity, w1 (rad/sec)










X1










X2










  • No labels