Code Parameters
Load Combination Table: The load combination table is used to map the analysis result cases and their corresponding factors to the template, along with the limit states. It serves as the basis for all finite element analysis results used in the code check equations.
Check For[StrengthServiceFatigue/Construtibility]: The code check component only allows for either a constructibility or a strength-service-fatigue limit state check in a single run. Therefore, if the user intends to perform a constructibility check, the finite element results that need to be mapped will likely differ significantly from those required for a strength-service-fatigue limit state check.
Include Haunch For Section Properties[Yes/No]: According to DOT requirements, haunch area may or may not be included in the sectional property computations. When haunch is included, it increases the inertia and section modulus and decreases the stress values, making the calculation less conservative. When the option "Include Haunch for Section Properties" is set to "No", the dimensions of the haunch are still used to determine the locations of the deck and girder sections. As a result, entering a larger haunch depth can lead to a higher section modulus, even though the option to include the haunch is set to "No".
Mlat Comp Method[FEA/AASHTO_Eqn_C4_6_1_2_4b_1/EnvelopeofFEAandAASHTOeqn]: If the user selects the FEA option, the lateral bending moments are calculated using finite element analysis. The OpenBrIM model divides the steel I-girder into three finite elements, using a beam for the top and bottom flanges and a shell for the web. This approach provides the user with a more accurate way to calculate realistic lateral bending values. However, if the user prefers to use the AASHTO equation, which converts the major axis bending moment to lateral bending, it may result in a more conservative approach. OpenBrIM provides an additional option for the user called "Envelope of FEA and AASHTO equation" which selects the larger value between the FEA and AASHTO equation results.
Fatique Parameters
ADTT: The annual daily truck traffic is a parameter used in fatigue checks.
Number of lanes available to truck: Number of lanes available to truck is a parameter used in fatigue checks.
Appendix A6
These provisions shall apply only to sections in straight bridges whose supports are normal or skewed not more than 20 degrees from normal.
Use Appendix A6 Provisions[Yes/No]:The optional provisions of Appendix A6 account for the ability of compact and noncompact web I-sections to develop flexural resistances significantly greater than My. The potential benefits of the Appendix A6 provisions tend to be small for I-sections with webs that approach the noncompact web slenderness limit of AASHTO Eq. A6.1-1. If the user selects "Yes" for Appendix A6 provisions, the code check component will internally verify for additional requirements and will not use it if all conditions are not met.
Appendix B6
This Article shall apply for the calculation of redistribution moments from the interior-pier sections of continuous span I-section flexural members at the service and/or strength limit states. These provisions shall apply only for I-section members that satisfy the requirements of Article B6.2.These optional provisions provide a simple rational approach for calculating the moment redistribution from interior-pier sections due to the effects of yielding. This approach utilizes elastic moment envelopes and does not require the direct use of any inelastic analysis methods. The restrictions of Article B6.2 ensure significant ductility and robustness at the interior-pier sections.
...